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Abstract: Fruit quality attributes interrelate with their dielectric properties, but such interrelationships
in sea buckthorn berries under differing freezing regimes remain uninvestigated. Sea buckthorn
(Hipophae rhamnoides L., cv. Shenqiuhong) berries were frozen at different temperatures (−13, −30,
−35 and −40 ◦C) and stored for different periods (15, 30, 45, 60, 75 and 90 d). Seven quality attributes
and nine dielectric parameters were measured to evaluate the effect of different frozen storage regimes
on those attributes and parameters. The results showed that shorter time and lower temperature
contributed to the preservation of berries quality. The dielectric parameters values increased with
decreasing temperature and with the increase of freezing duration. The quality prediction models
were established by the principal component analysis of the dielectric properties at characteristic
frequency. The results are expected to provide a way to evaluate quality of frozen sea buckthorn
berries by dielectric properties.

Keywords: sea buckthorn; frozen storage; quality attribute; dielectric property; prediction model

1. Introduction

Sea buckthorn (Hippophae rhamnoides L.) is a shrub of the Elaeaceae family. Its berries
were often postharvest preserved under freezing before processing, but the berry quality
reduced with the storage extension [1]. Cryopreservation was an effective way to preserve
perishable fruit [2], due to the fact that the content of total phenolic and anthocyanins and
the antioxidative activity of frozen haskap berries decreased significantly with the storage
extension, and the lower the freezing temperature was, the more antioxidant components
were preserved [3]. The content ascorbic acid of strawberries frozen at −27 ◦C for 90 d
was significantly lower than that in the early freezing period [4]. Soluble solids and total
phenolics of frozen blackberries decreased with the increasing of freezing duration [5]. The
freezing duration also affected the titratable acids of grapes, and destroyed the structure
of cells, with a 25% loss compared to fresh grapes [6]. Prolonging freezing storage dura-
tion not only compromised the fruit quality, but also affected their dielectric properties.
Freezing at −18 ◦C destroyed the cell membrane of blueberries, resulting in the leakage
of electrolytes and other compound extravasation, the decrease of complex impedance
values, extracellular resistance and membrane capacitance, and low frequency impedance
values were significantly higher than the high frequency complex impedance values. Due
to the destruction of the cell membrane, the peel pigment of the fruit spread into the pulp,
in which it deepened the pulp color. The complex impedance values could be used as an
important indicator of cell membrane structure integrity by demonstrating a correlation
between the membrane and the variations in the color and size of the frozen blueberries [7].
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Freezing could destroy the cell membrane of sweet orange and increase the electrical con-
ductivity of cells, resulting in significant decrease of complex impedance and capacitance
values [8]. Additionally, fresh and frozen oranges could be differentiated using dielectric
characteristics [9]. Freezing accelerated free water loss in strawberries, and the dielectric
loss coefficient increased with increasing temperature [10]. Bian et al. [11] used the two
principal components of ten dielectric parameters at the characteristic frequencies that
established the physicochemical quality prediction models of bruised apples during storage.
Dielectric properties could predict quality indices of kiwifruit during storage [12]. Dielec-
tric properties could also be used as a method for determining SSC of persimmons [13].
There exists a mathematical relationship between the total soluble solids content and the
impedance (Z), resistance (R), admittance (Y) and conductance (G) of apple juice, and these
dielectric parameters could be used to determine the TSS of apple juice [14].

Although there have been studies on the changes of fruit quality attributes and di-
electric parameters and their interactions during freezing, how the quality and dielectric
properties of sea buckthorn berries change during freezing and their interrelationships have
not been examined. In this study, the principal component and grey relation analysis were
used to analyze the dielectric properties and quality attributes of sea buckthorn berries
under different freezing time and temperature. The characteristic frequencies of the best
dielectric parameter corresponding to each quality attributes were used to establish the
detection model of the quality attributes.

2. Materials and Methods
2.1. Materials

Sea buckthorn berries (cv. Shenqiuhong) were harvested 120 d after flowering in 2021
from Ecological Industrial Park (38◦43′26” N, 100◦39′36” E), with an altitude of 1666 m in
Minle County, Zhangye City, China. The berries were immediately packed and cooled with
ice bags and transported to the College of Horticulture, Gansu Agricultural University.

2.2. Berry Processing and Freezing

Sea buckthorn berries of the same size and color, without mechanical damage and
pest and disease infection, were selected. After the pedicel was cut manually, the berries
were packed in polyethylene bags of (7 × 10 cm). In the control group, the sub-packaged
berries were stored in a 4 ◦C ± 1 ◦C thermostatic humidifier (HWS-260B, Hangzhou Lubo
Instrument Co., Ltd., Hangzhou, China). In the experimental group, the sub packaged
berries were stored in a low-temperature refrigerator (BC/BD-200HER, Qingdao Haier
Special Electric Co., Ltd., Qingdao, China) at −13 ◦C, −30 ◦C, −35 ◦C and −40 ◦C. The
quality attributes and dielectric parameters of the berries were measured at 0 d, 15 d, 30 d,
45 d, 60 d, 75 d and 90 d, respectively, and the fresh fruits stored at 4 ◦C for 0 d were used
as control.

2.3. Determination of Quality Attributes
2.3.1. Chemicals

All chemicals used were of analytical grade. Potassium hydrogen phthalate, phenolph-
thalein, sodium hydroxide, anthrone, sucrose, ethyl acetate, gallic acid, aluminum chloride,
concentrated sulfuric acid, sodium nitrite, anhydrous ethanol and sodium carbonate were
purchased from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). Catechin, ascor-
bic acid and oxalic acid were purchased from Shanghai McLean Biochemical Technology
Co., Ltd. (Shanghai, China). Folinphenol was purchased from Beijing Soleibao Technology
Co., Ltd. (Beijing, China). 2, 6-dichlorophenol indophenol was purchased from Shanghai
Yuanye Biotechnology Co., Ltd. (Shanghai, China). The quality attributes were measured
repeatedly three times.
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2.3.2. Determination of Water Content

The water content (WC) on wet bases of the berries was determined using a rapid moisture
meter (QL-100A, Xiamen Qunlong Instrument Co., Ltd., Xiamen, China, accuracy ± 0.1%),
according to the method of Huang et al. [15] and expressed as (%).

2.3.3. Determination of Total Soluble Solids, Soluble Sugar, Titratable Acids and
Ascorbic Acid

The content of total soluble solids (TSS), soluble sugar (SSC), titratable acids (TA) and
ascorbic acid (AA) was determined by the procedure of Cao et al. [16].

Frozen sea buckthorn berries (5.0 g) were homogenized, centrifuged at 4000 r/min in
a high-speed refrigerated centrifuge (3K15, SIGMA Laboratory Centrifuge, Osterode am
Harz, Germany) for 10 min, at 4 ◦C, and the corresponding supernatants were collected.
The content of total soluble solids (TSS) was determined by handheld refractometer (PAL-
BXIACID2, ATAGO Co., Ltd., Tokyo, Japan) and expressed as (%).

The content of soluble sugar (SSC) was determined spectrophotometrically (UV-1780,
Shimadzu Instruments (Suzhou) Ltd., Suzhou, China) using the anthrone-sulfate method
with sucrose as standard. The absorbance of the mixture was measured at 620 nm and
expressed as (%). The content of titratable acids (TA) was determined by sodium hydroxide
solution titration method titrating with 0.1 mol/L NaOH to pH 8.1 and expressed as (%).
The content of ascorbic acid (AA) was determined by the 2, 6-dichlorophenol-indophenol
titration method titrating with calibrated 2, 6-dichlorophenol indophenol until it appears
reddish and does not fade for 15 s and expressed as mg/100 g.

2.3.4. Determination of Total Flavonoids and Total Phenolic Content

Frozen sea buckthorn berries (0.5g) were homogenized, extracted with 20 mL 75%
(w/v) ethyl alcohol in a plug triangular bottle using a constant temperature shaker (TS-200B,
Nanning Kechen Experimental Equipment Co., Ltd., Nanning, China) rotating oscillation
at 120 r/min for 2 d at room temperature in darkness. Centrifuged at 5000 r/min using
a high-speed refrigerated centrifuge (3K15, SIGMA Laboratory Centrifuge, Osterode am
Harz, Germany) for 10 min at 4 ◦C, and the corresponding supernatants were collected.

Total flavonoids content (TFC) was determined spectrophotometrically (UV-1780,
Shimadzu Instruments (Suzhou) Ltd., Suzhou, China) using the colorimetric method of
Lay et al. [17] with some modifications. The extract (5 mL) was mixed with 2 mL of distilled
water and 0.3 mL of a 5% NaNO2solution. After 5 min, 0.3 mL of a 10% AlCl3H2O solution
was added, and after 1 min, 2 mL of 1 mol/L NaOH was also added to prepare the mixture.
The solution was mixed well, and the absorbance was read at 510 nm.

Total phenolic content (TPC) was determined spectrophotometrically (UV-1780, Shi-
madzu Instruments (Suzhou) Ltd., Suzhou, China) using the Folin–Ciocalteu colorimetric
method of Beato et al. [18] with some modifications. The extract (1.5 mL) was mixed with
2 mL of Folin–Ciocalteu reagent (10%; w/v) and 1 mL of NaCO3 (7.5%; w/v). The mixture
was heated at 37 ◦C for 1 h in a water bath in darkness and the absorbance was measured
at 760 nm.

Standard curves were established for flavonoids and phenolics contents using catechin
(CE) and gallic acid equivalents (GAE) as standards. The results were expressed as CE
mg/g FW and GAE mg/g FW.

2.4. Determination of Dielectric Parameters

Using the LCR tester [8] (IM3536, HIOKI (Shanghai) Measurement Technology Co.,
Shanghai, China), 300 low-frequency signal points of sea buckthorn berries was measured
in the range of 1000 Hz and 1 MHz, the laboratory-made parallel electrode plate [19] was
connected to the LCR tester, before the determination of dielectric parameters, we preheated
the LCR tester for 1h. After the preheating, the open circuit (air) and short circuit correction
parallel electrode plate were performed. After the correction, the dielectric parameters of
the air were measured to determine whether it was necessary to correct again. The electrode
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plate fixture containing the sea buckthorn berries was placed in a refrigerator corresponding
to the freezing temperature of the berries. The detection position was two symmetrical
parts on the equator of the fruit, and the knob at the top of the parallel electrode plate was
rotated to make the contact stable. The LCR tester was connected with a notebook computer
by a USB data cable, and the dielectric parameters were measured and recorded online.
The parallel electrode plate consists of two round copper plates (3 mm thickness × 35 mm
diameter), and the electrode spacing was adjusted according to the size of berries. The test
device is shown in Figure 1. The control temperature and humidity were constant during
the test (temperature: −13 ◦C ± 0.6 ◦C, −30 ◦C ± 1 ◦C, −35 ◦C ± 0.6 ◦C, −40 ◦C ± 0.2 ◦C);
RH: 65–70%). A total of nine dielectric parameters were measured as parallel equivalent
capacitance (Cp), parallel equivalent resistance (Rp), complex impedance (Z), susceptance
(B), conductance (G), quality factor (Q), parallel equivalent reactance (X), parallel equivalent
inductance (Lp) and dielectric loss coefficient (D). The experiment was repeated five times.
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2.5. Principal Component Analysis

Principal component analysis (PCA) is an analysis method that s (s ≤ p) unrelated
common factors, as the comprehensive indicators, which can be obtained from the linear
combination of p variables through the process of dimensional reduction. PCA transforms
multiple potentially correlated variables which can be combined into a small number of
uncorrelated composite variables called principal components [20]. The principal compo-
nent analysis was performed on nine dielectric parameters of the berries at 300 detection
frequencies, and stable principal components were chosen with a cumulative variance
contribution greater than 80%. Before the principal component analysis, Z-score normaliza-
tion was used to eliminate the effect of data dimensionality due to different units of the
dielectric parameters.

2.6. Grey Relation Analysis

Grey relation analysis [21] is based on the degree of similarity between discrete data
in the grey system to determine the size of the correlation and sort. The basic idea is
to determine the degree of correlation between the various elements according to the
similarity of the geometry of the feature sequence curve in the system. Grey relation
analysis does not require many samples, and it can be applied to analyze irregular data [11].
The comparison sequence (subsequence) consisted of comprehensive parameters which
represented the dielectric parameters of the frozen berries obtained by principal component
analysis; the reference sequence (parent series) consisted of seven quality attributes of
frozen sea buckthorn berries. The correlations between the quality attributes of frozen sea
buckthorn berries and the principal components at each testing frequency were obtained by
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grey relation analysis, and the testing frequency with the highest correlation was selected
as the characteristic frequency for predicting the quality attributes of the fruits.

2.7. Construction and Validation of Quality Attributes Prediction Models

Taking two principal components of the dielectric properties of the berries during
freezing as independent variables, and the quality attributes as the dependent variables,
the regression model was established to predict the quality attributes with the principal
component of the dielectric properties. The prediction results were evaluated using the
experimental data of sea buckthorn berries 90 d after the freezing as the validation group.

2.8. Statistical Analysis

The data were analyzed using IBM SPSS Statistics 25.0 software (Version 25.0, SPSS
Inc., Chicago, IL, USA), and expressed as mean ± standard deviation (SD). The principal
components of the dielectric parameters were selected by principal component analysis.
The correlation between the characteristic frequencies of dielectric parameters and the
quality attribute was determined by the Pearson correlation analysis (two-tailed test). Grey
relation analysis of the dielectric parameter characteristic frequencies was performed using
MATLAB R2019b software (The MathWorks Inc., Natick, MA, USA). Origin 2019b software
(OriginLab Co., Northampton, MA, USA) was used to prepare graph and build predictive
models for the quality attributes.

3. Results and Discussion
3.1. Effects of Freezing Time and Temperature on Quality of Sea Buckthorn Berries

WC, TSS, SSC and TA were important attributes which affected the quality of sea
buckthorn berries [22]. With the extension of freezing time, the WC, TSS, SSC and TA
contents of the berries steadily decreased, and frozen at −30 ◦C for 45 d were lower than
those frozen at 0 d by 13.0%, 10.9%, 29.2% and 21.0%, respectively. The WC, TSS, SSC and
TA contents of the berries at −30 ◦C for 75 d were lower than those frozen at 0 d by 23.5%,
17.0%, 31.3% and 22.2%, respectively (Figure 2). With the decrease in freezing temperature,
the quality attributes of the berries also decreased steadily. The quality attributes of the
fruit stored at −30 ◦C for 45 d were higher than those at −13 ◦C by 5.4%, 4.8%, 17.1% and
9.1%, respectively. The quality attributes of the berries frozen at −40 ◦C for 45 d were
higher than those at−13 ◦C by 13.0%, 10.8%, 26.7% and 22.7%, respectively (Figure 2). With
the extension of freezing time, the berry cells experienced compressive stress during the
transformation of water into ice crystals, and the ice crystals endured tensile stress caused
by cell shrinkage during further cooling. When the tensile stress exceeded the rupture stress
of cell structure, the difference between the compressive stress and tensile stress resulted in
cell rupturing [23]. This made the intracellular TSS, SSC and TA easier to spill and degrade,
resulting in reduced contents [24]. Water sublimated slowly during freezing, resulting in
the decrease in the WC of the berries. Compared with ambient water vapor, the water
vapor pressure inside the berries was saturated during freezing, and with the decrease in
freezing temperature, the ice crystals at low temperature were less likely to sublime into
the freezing environment due to the presence of different pressures [25]. As temperature
dropped, the berry respiration rate grew less and metabolic activity slowed down [26].
The consumption of TSS and SSC slowed down [27], and the decrease of enzyme activity
affected the TCA cycle reaction speed [28]. Therefore, the lower the freezing temperature,
the better the preservation effect of WC, TSS, SSC and TA of berries.
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sea buckthorn berries. Bars indicated standard error (±SD). The -�-, -•-, -N-, -H- show the freezing
temperature of −13, −30, −35 and −40◦C, respectively. The data are mean values of three replicates.

AA, TFC and TPC were important antioxidant components of sea buckthorn berries [29,30].
With the extension of freezing time, the contents of AA, TFC and TPC of the berries steadily
decreased. The contents of AA, TFC and TPC of berries stored at−30 ◦C for 45 d were lower
than those at 0 d by 20.5%, 47.0% and 35.5%, respectively. The contents of AA, TFC and TPC
of the fruits frozen at −30 ◦C for 75 d were 24.9%, 51.4% and 38.0% lower than those at 0 d,
respectively (Figure 3). As the freezing temperature decreased, the contents of AA, TFC and
TPC of the berries decreased. The contents of AA, TFC and TPC of the berries at −30 ◦C for
45 d were 3.7%, 15.9% and 15.8% higher than those at −13 ◦C, respectively. The contents of
AA, TFC and TPC of the berries at −40 ◦C for 45 d were lower by 11.5%, 41.5% and 31.1%
than those stored at −13 ◦C (Figure 3). With prolonged freezing time, ice crystals could
disassemble the structure of berry cell membrane, leading to the destruction of substrate
and enzyme separation and the increase of contact probability [3]. AA was oxidized by
ascorbic acid oxidase (AAO) [4]. TFC and TPC were easily oxidized by polyphenol oxidase
(PPO) and peroxidase (POD) [31]. With the decrease in freezing temperature, the integrity
of the fruit cell membrane was maintained [24], and the oxidation rates of AA, TFC and
TPC decreased [32].
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3.2. Effects of Freezing Time and Temperature on Cp, Rp and Z Values of Sea Buckthorn Berries

The Cp and Z values of sea buckthorn berries decreased while the Rp value increased
with the extension of freezing time. At 251,590 Hz, the Cp and Z values of the berries at
−35 ◦C for 60 d were lower by 141.5% and 81.0% compared with the berries frozen at 0 d,
respectively, while the Rp value was 49.6% higher than the berries frozen at 0 d. The Cp
and Z values of berries frozen at −40 ◦C for 75 d were lower than those at 0 d by 244.1%
and 6.2%, respectively, while the Rp value was 20.3% higher at 0 d (Figure 4). The Cp, Rp
and Z values of sea buckthorn berries increased with the decrease in freezing temperature.
Within the range of 1000–64,482 Hz, the Cp, Rp and Z values decreased rapidly, presenting
an obvious linear relationship with the detection frequency. At 1000 Hz, the Cp, Rp and
Z values of the berries at −40 ◦C for 30 d were 69.6%, 93.9% and 75.6% higher than those
at −13 ◦C, respectively. In addition, the Cp, Rp and Z values of the berries at −35 ◦C for
75 d were 25.0%, 60.5% and 54.8% higher than those at −13 ◦C, respectively (Figure 4). The
Cp, Rp and Z values of fruits decreased with the increase of detection frequency during
freezing. The Cp, Rp and Z values at 1 MHz, frozen at −30 ◦C for 45 d were 4.47, 47.6
and 75.4 times lower than those at 1000 Hz, respectively (Figure 4). The Cp, Rp and Z
values at low frequencies were significantly higher than those at high frequencies. This
was because a low-frequency current passed through the extracellular fluid but not the cell
structure. However, at high frequencies, some current passed through the cell membrane
via intracellular fluid [33]. This phenomenon resulting from cell structures in biological
tissue is known as β dispersion [34]. Therefore, it was speculated that the Cp, Rp and Z



Foods 2022, 11, 3825 8 of 15

values of frozen berries decreased with the increase of detection frequency. The decrease of
Z value with the increase of freezing time was caused by ice crystals puncturing the cell
membrane, resulting in a decrease in the capacitance of the tissues [7].
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Figure 4. Effects of different freezing times and temperatures on the parallel equivalent capacitance
Cp, parallel equivalent resistance Rp and complex impedance Z of sea buckthorn berries. ((A), 0 d;
(B), 15 d; (C), 30 d; (D), 45 d; (E), 60 d; (F), 75 d). The data are mean values of five replicates.

3.3. Effects of Freezing Time and Temperature on B, G and Q Values of Sea Buckthorn Berries

The B and G values of sea buckthorn berries decreased, while the Q value increased
with the extension of freezing time. At 502,170 Hz, the B and G values of berries at −35 ◦C
for 60 d were lower by 51.5% and 146.5% than those at 0 d, while the Q value was 51.4%
higher than that frozen at 0 d. In addition, the B and G values of berries at −30 ◦C for 45 d
were 155.9% and 10.7% lower than the berries frozen at 0 d, and the Q value was 3.8% higher
than the berries frozen at 0 d (Figure 5). At the same detection frequency, the B, G and Q
values of the berries increased with the decrease in freezing temperature. At 749,410 Hz,
the B, G and Q values of berries stored at −40 ◦C for 75 d were 25.7%, 28.8% and 19.1%
higher than those at −13 ◦C, respectively. The B, G and Q values of berries at −35 ◦C for
60 d were higher than those at −13 ◦C by 16.8%, 28.6% and 26.4%, respectively (Figure 5).
The changes of B and G values of sea buckthorn berries during the freezing increased with
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the increase of detection frequency, and the Q value showed an increasing-decreasing-
increasing trend with the increase of detection frequency (Figure 5). At low-frequency,
the cell membrane capacitance is large, and the alternating current can only pass through
the cell membrane. As the frequency increases, the capacitance of the cell membrane
decreases, and the alternating current can pass through the entire protoplast [35,36]. With
the decrease in freezing temperature and the extension of freezing time, owing to the
effect of ice crystallization in extracellular fluids on tissue destruction [37], ice crystals
destroyed the cell membrane structure, resulting in the leakage of intracellular water and
soluble substances [38], the dielectric properties of berries changed. The permeability of
the cell membrane was enhanced, and the bound water was converted to free water [39].
As the detection frequency increased, the ability and stability of acceptance current and
conduction current of frozen sea buckthorn berries were enhanced.
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Figure 5. Effects of different freezing times and temperatures on the susceptance B, conductance G
and quality factor Q of sea buckthorn berries. ((A), 0 d; (B), 15 d; (C), 30 d; (D), 45 d; (E), 60 d; (F),
75 d). The data are mean values of five replicates.
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3.4. Effects of Freezing Time and Temperature on X, Lp and D Values of Sea Buckthorn Berries

The X and Lp values of sea buckthorn berries decreased and the D value increased
with the extension of freezing time. At 251,590 Hz, the X and Lp values at −30 ◦C for 60 d
were 59.7% and 5.1% lower than those at 0 d, while the D value was 76.6% higher than
0 d. The X and Lp values of fruits stored at −35 ◦C for 45 d were 29.3% and 37.1% lower
than those at 0 d. The D value was 64.5% higher than that at 0 d (Figure 6). At the same
frequency, the X, Lp and D values of frozen berries increased with the decrease in freezing
temperature. At 1000 Hz, the X, Lp and D values of berries held at −40 ◦C for 30 d were
higher than those at −13 ◦C by 528.7%, 49.7% and 41.8%, respectively. The X, Lp and D
values of berries at −40 ◦C for 45 d were higher than those at −13 ◦C by 22.9%, 18.2%
and 14.6%, respectively (Figure 6). During the freezing, the X and Lp values of berries
increased with the increase of detection frequency and then remained stable. The D value
showed a trend of decrease-increase-decrease with the increase of detection frequency
(Figure 6). The dielectric properties of the berries were affected by temperature [40]. With
the decrease in freezing temperature, the ability of berries to produce electromagnetic
induction increased [41]. The complex impedance value and the energy dissipation value
in the electric field increased gradually. This was because the internal composition and
the structure of the fruit were complex, which included various systems with different
physical properties (cell membrane, cytoplasm, cytosol and bioelectrolyte). When these
systems changed, their dielectric properties also changed [8]. Ando et al., [42] found that
the damage of cell membrane led to a decrease of X value with the increase of temperature,
the freezing caused cell membrane damage of sea buckthorn berries, resulting in the
change of X value. In the low frequency area, the D value at 75 d of sea buckthorn berries
was higher than 0 d, while in the high frequency area, the D values of sea buckthorn
berries under differing freezing regimes were very similar, thus illustrating the dominant
influence of ionic conduction at the lower frequencies and the dipolar losses at the higher
frequencies [43,44]. The dielectric loss factor is related to various absorption mechanisms
of energy dissipation [45], the D value showed a trend of decrease-increase-decrease with
the increase of detection frequency, which might be caused by bound water and Maxwell–
Wagner relaxations [13].

3.5. Principal Components of Dielectric Properties of Sea Buckthorn Berries during Freezing

After the principal component analysis of nine dielectric parameters of sea buckthorn
berries during the freezing, two principal components (PCA1 and PCA2) were obtained
according to the requirement that the principal component eigenvalue is greater than
1 (Figure 7). The variance contribution rates of PCA1 and PCA2 were 62.2–76.5% and
16.8–31.3%, the cumulative variance contribution of PCA1 and PCA2 was 87.6–95.0%.
PCA1 and PCA2 could be used to characterize the dielectric properties of sea buckthorn
berries during freezing. The information of Cp, Rp, Z, B, G and Q was mainly integrated in
PCA1. The information of X, Lp and D was mainly integrated in PCA2.

3.6. Grey Relation Method to Select the Optimal Characteristic Frequency of Quality Attributes

The dielectric properties of sea buckthorn berries during freezing were closely related
not only to their quality attributes, but also to the frequency of detection [12]. Therefore, in
order to evaluate quality attributes with the dielectric properties, the detection frequencies
that were more sensitive to the quality should be selected and then the best dielectric
parameter corresponding to the quality could be determined. By calculating and comparing
the correlation between the quality attributes and the dielectric parameters corresponding
to each detection frequency, the detection frequency with the most significant correlation
was selected as the characteristic frequency to predict the quality attributes of sea buckthorn
berries. The result of correlation analyses between seven quality attributes and principal
components of dielectric parameters is shown in Table 1. The results show that different
quality attributes corresponded to different characteristic frequencies, and the characteristic
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frequencies were low frequencies [46]. This phenomenon is consistent with the theory that
low-frequency current only passes through extracellular fluid.
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Table 1. Correlations between seven quality attributes and dielectric parameters of sea buckthorn
fruit during freezing.

Quality
Attribute

Maximum Correlation
of the First Principal

Component (R2)

Characteristic Frequency
of the First Principal

Component (Hz)

Maximum Correlation of
the Second Principal

Component (R2)

Characteristic
Frequency of the
Second Principal
Component (Hz)

WC 0.8010 635,820 0.5635 144,670
TSS 0.6958 615,700 0.6380 137,990
SSC 0.7336 602,400 0.5940 134,650
TA 0.8061 609,090 0.5959 127,960
AA 0.7452 612,430 0.6217 164,720
TFC −0.7743 61,140 −0.5624 70,932
TPC −0.8425 54,458 0.5595 127,960

3.7. Prediction Model of Quality Attributes of Sea Buckthorn Berries during Freezing

Different quality attributes correspond to different characteristic frequencies. At a
characteristic frequency, the dielectric properties PCA1 and PCA2 can be used to predict
the WC, TSS, SSC, TA, AA, TFC and TPC contents of frozen sea buckthorn berries. The
quality prediction equation and determination coefficient are shown in Table 2. The deter-
mination coefficient of the TPC prediction equation was higher than 0.7, the determination
coefficient of WC, SSC, TA, AA and TFC prediction equation was higher than 0.6, and the
determination coefficient of the TSS prediction equation was higher than 0.5, indicating that
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the principal component of dielectric properties can be used to predict the seven attributes
of frozen sea buckthorn berries.

Table 2. Correlations between seven quality attributes and dielectric parameters of sea buckthorn
fruit during freezing.

Quality Attribute Prediction Equation Coefficient of
Determination R2

WC y = 32.0793 + 33.27517x1+1.99795x2 0.644
TSS y = 10.61726 + 3.10878x1+0.92816x2 0.526
SSC y = 5.99866 + 3.78589x1+1.9236x2 0.648
TA y = 2.99309 + 3.5762x1+0.37229x2 0.659
AA y = 252.68948 + 515.54387x1 − 205.42313x2 0.643
TFC y = −0.14958 − 0.46276x1 − 0.07798x2 0.622
TPC y = 1.087 − 0.58149x1 +0.41608x2 0.746

Note: x1, x2 and y indicate PCA1, PCA2 and quality attribute.

3.8. Verification of Quality Prediction Equation

To verify the prediction accuracy of dielectric properties on WC, TSS, SSC, TA, AA,
TFC and TPC contents, berries frozen for 90 d were used to compare the measured and
predicted values of these seven quality attributes.

Table 3 shows the measured and predicted values of berries frozen for 90 d. The
average relative error of TA, AA and TFC was higher than 10%, which indicated that the
prediction accuracy was poor. The average relative errors of WC, TSS, SSC and TPC were
less than 5%, indicating that the prediction accuracy was good.

Table 3. The measured and predicted values of fruit quality attributes of verified sea buckthorn group
of frozen for 90 d.

Quality
Attribute

−13 ◦C −30 ◦C −35 ◦C −40 ◦C Average
Relative

ErrorMeasured Predicted Measured Predicted Measured Predicted Measured Predicted

WC 49.95 ± 0.11 53.76 54.43 ± 0.55 54.23 61.29 ± 0.13 59.88 63.58 ± 0.06 64.09 2.44%
TSS 10.50 ± 0.49 10.56 10.78 ± 0.06 11.12 11.00 ± 0.36 11.62 11.40 ± 0.19 11.88 3.39%
SSC 3.83 ± 0.48 3.56 4.89 ± 0.14 4.91 5.81 ± 0.55 5.88 6.40 ± 0.38 6.33 2.38%
TA 4.66 ± 0.06 2.99 4.87 ± 0.09 4.72 5.29 ± 0.11 4.78 5.86 ± 0.07 5.11 15.81%
AA 988.42 ± 3.68 1182.86 981.95 ± 2.74 979.65 996.06 ± 2.09 923.17 1010.53 ± 2.09 874.79 10.16%
TFC 0.60 ± 0.04 0.82 0.76 ± 0.03 0.74 0.90 ± 0.01 0.75 1.18 ± 0.25 0.71 24.01%
TPC 1.26 ± 0.05 1.26 1.60 ± 0.08 1.60 2.10 ± 0.01 1.96 2.25 ± 0.04 2.07 4.81%

4. Conclusions

The longer the freezing time and the lower the storing temperature, the faster the WC,
the content of TSS, SSC, TA, AA, TFC and TPC of sea buckthorn berries decreased. At the
same detection frequency, Cp, Z, B, G, X and Lp values of sea buckthorn berries decreased
while the Rp, Q and D values increased with the increasing of freezing time. The values of
dielectric parameters of the berries increased with decreasing temperature. As the detection
frequency increased, the Cp, Rp and Z values decreased, the B and G values increased, the
Q values showed an increasing-decreasing-increasing trend, the X and Lp values increased
and then tends to be stable, and the D values showed a decreasing-increasing-decreasing
trend. Because the dielectric properties of frozen sea buckthorn berries vary with different
detection frequencies, we used grey relation analysis to select the characteristic frequency
of principal components of dielectric properties with the maximum correlation degree. By
using the principal components of the dielectric properties at the characteristic frequencies,
a detection model for the WC, TSS, SSC, TA, AA, TFC and TPC content of frozen sea
buckthorn berries was established. The average relative errors of WC, TSS, SSC and TPC
contents were less than 5%. The prediction accuracy of the WC, TSS, SSC and TPC detection
model was great, while the prediction accuracy of the TA, AA and TFC detection model
was poor.
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